Exam

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1)

2)

1) Consider the following linear programming model: $X_1^2 + X_2 + 3X_3$ Max Subject to: $X_1 + X_2 \leq 3$ $X_1 + X_2 \leq 1$ $X_1, X_2 \ge 0$ This problem violates which of the following assumptions? A) proportionality B) certainty C) integrality D) linearity E) divisibility 2) Consider the following linear programming model: 2X₁ + 3X₂ Min Subject to: $X_1 + 2X_2 \leq 1$ X2 ≤ 1 $X_1 \ge 0, X_2 \le 0$ This problem violates which of the following assumptions? A) additivity B) linearity C) proportionality D) non-negativity

E) divisibility

3) A redundant constraint is eliminated from a linear programming model. What effect will this have 3) _________ on the optimal solution?

A) feasible region will increase in size

B) feasible region will decrease in size

C) an increase in objective function value

D) no change

E) a decrease in objective function value

4) Consider the following linear programming model:

Max $2X_1 + 3X_2$

Subject to:

 $X_1 \le 2$ $X_2 \le 3$ $X_1 \le 1$ $X_1, X_2 \ge 0$

This linear programming model has:

- A) non-negative solution
- B) alternate optimal solutions
- C) infeasible solution
- D) redundant constraint
- E) unbounded solution

5) A linear programming model generates an optimal solution with fractional values. This solution 5) ______ satisfies which basic linear programming assumption?

- A) certainty
- B) divisibility
- C) non-negativity
- D) proportionality
- E) linearity

6) Consider the following linear programming model:

Max $X_1 + X_2$ Subject to: $X_1 + X_2 \le 2$

$$X_1 \ge 1$$

X₂≥3

$$X_1, X_2 \ge 0$$

This linear programming model has:

A) unbounded solution

- B) infeasible solution
- C) alternate optimal solution
- D) redundant constraint
- E) unique solution

7) Consider the following linear programming model

Max 2X₁ + 3X₂

Subject to:

$$X_1 + X_2 \ge 4$$
$$X_1 \ge 2$$

. X₁, X₂ ≥0

This linear programming model has:

A) unique solution

- B) alternate optimal solution
- C) unbounded solution
- D) redundant constraints
- E) infeasible solution

7)

6)

8) Consider the following linear programming model

Min $2X_1 + 3X_2$

Subject to:

$$X_1 + X_2 \ge 4$$
$$X_1 \ge 2$$

This linear programming model has:

A) infeasible solution

B) unbounded solution

C) redundant constraints

D) unique optimal solution

E) alternate optimal solution

Figure 1:

	A	В	C	D	E
1					
2		X_1	X_2		
3	Number to Make:				OBJ. FN. VALUE:
4					
5	Unit profit:	\$4	\$3		
6					
7	Constraints:			Used	Available
8	1	3	5		40
9	2	12	10		120
10	3	1	0		15

Figure 1 demonstrates an Excel spreadsheet that is used to model the following linear programming problem:

Max: $4 X_1 + 3 X_2$ Subject to: $3 X_1 + 5 X_2 \le 40$ $12 X_1 + 10 X_2 \le 120$ $X_1 \ge 15$ $X_1, X_2 \ge 0$

Note: Cells B3 and C3 are the designated cells for the optimal values of X_1 and X_2 , respectively, while cell E4 is the designated cell for the objective function value. Cells D8:D10 designate the left-hand side of the constraints.

9) Refer to Figure 1. What formula should be entered in cell E4 to compute total profitability?
 A) =B2*B5 + C2*C5

9)

A) =B2*B5 + C2*C5 B) =B3*B5 + C3*C5 C) =SUM(B3:C3) D) =SUMPRODUCT(B5:C5,B2:C2) E) =SUMPRODUCT(B5:C5,E8:E10)

B) =B9*D9 + C9 C) =SUMPROD	UCT(B9:C9,B5:C5) *D9 UCT(B2:C2,B9:C9)	ld be entered in cel	D9 to compute the a	mount of resource 2	10)
D) =SUM(B9:C9 E) =SUMPROD) UCT(B3:C3,B9:C9)				
11) Refer to Figure 1. A) D8:D10	Which cell(s) are th B) B5:C5	e <i>Changing Cells</i> as (C) E4	designated by "Solver D) B3:C3	"? E) B2:C2	11)
12) Refer to Figure 1. A) D8:D10	What cell reference B) B3	designates the <i>Targ</i> C) C3	et Cell in "Solver"? D) E4	E) E8:E10	12)
13) The constraint for 2X ₁ + 3X ₂ ≤20			C .		13)
		of this resource are			
A) 17	B) 20	C) 19	D) 0	E) 1	
14) The constraint for 2X ₁ + 3X ₂ ≥ 20	5	given by the follow	ing equation:		14)
. –	-	of this resource are			
A) 22	B) 20	C) 0	D) 9	E) 2	
 15) "Solver" typically (A) limits report B) sensitivity ar C) answer repord D) A and B only E) A, B, and C 	nalysis report rt				15)
 16) systemation A) Trial-and-er B) The simplex C) Karmarkar's D) The graphication E) none of the another 	ror method method Il approach	ner points, using al	gebraic steps, until an	optimal solution is	16)
17) follows a A) Karmarkar's B) The graphica C) Trial-and-er D) The simplex E) none of the a	method Il approach ror method	de the feasible regio	n to find an optimal s	solution.	17)
IE/FALSE. Write 'T' if th	ne statement is true	and 'F' if the state	ment is false.		
18) If a linear program		alternate optimal so		ctive function value	18)

19) Unbounded lii	near programming problems typically arise as a result of misformulation.	19)
-	line can be moved outward such that the objective function value can be made to then this problem has an unbounded solution.	20)
21) If a redundant on the optimal		21)
22) A linear progr a redundant co		22)
23) A linear progr problem is infe		23)
24) It is possible to	o solve graphically a linear programming model with 4 decision variables.	24)
25) An isoprofit lii	ne represents a line whereby all profits are the same along the line.	25)
	mming models typically do not have coefficients (i.e., objective function or constraint at assume random values.	26)
27) It is possible fo values.	or a linear programming model to yield an optimal solution that has fractional	27)
	camming model has the following objective function: $X_2 + 4X_3$. This model violates a key linear programming model assumption.	28)
<i>,</i> .	nix problem, a decision maker has limited availability of weekly labor hours. Labor a since the second structure a decision variable rather than a constraint.	29)
30) When using So	olver, the parameter <i>Changing Cells</i> is typically associated with the objective function.	30)
31) The simplex m	nethod is an algebraic solution procedure for a linear programming problem.	31)
32) Karmarkar's m	nethod is synonymous with the corner point method.	32)
ESSAY. Write your answ	wer in the space provided or on a separate sheet of paper.	

33) Consider the following linear programming problem.

$6X_1 + 4X_2$
$X_1 + 2X_2 \le 16$
$3X_1 + 2X_2 \leq 24$
X ₁ ≥2
$X_1, X_2 \ge 0$

Use Solver to find the optimal values of X_1 and $\mathsf{X}_2.$

34) Consider the following linear programming problem.

Maximize $5X_1 + 3X_2$ Subject to: $X_1 + X_2 \le 20$ $X_1 \ge 5$ $X_2 \le 10$ $X_1, X_2 \ge 0$

Use Solver to find the optimal values of X_1 and X_2 .

35) Consider the following linear programming problem.

Minimize $3X_1 + 2X_2$ Subject to: $X_1 + X_2 \ge 10$ $X_1 + X_2 \le 20$ $X_2 \le 10$ $X_1 \le 18$ $X_1, X_2 \ge 0$

Use Solver to find the optimal values of X_1 and X_2 .

- 36) Consider the following linear programming problem.
 - Minimize $6X_1 + 3X_22$ Subject to: $2X_1 + 4X_2 \ge 16$ $4X_1 + 3X_2 \ge 24$ $X_1, X_2 \ge 0$

Use Solver to find the optimal values of X_1 and X_2 .

37) A computer retail store sells two types of flat screen monitors: 17 inches and 19 inches, with a profit contribution of \$300 and \$250, respectively. The monitors are ordered each week from an outside supplier. As an added feature, the retail store installs on each monitor a privacy filter that narrows the viewing angle so that only persons sitting directly in front of the monitor are able to see on-screen data. Each 19" monitor consumes about 30 minutes of installation time, while each 17" monitor requires about 10 minutes of installation time. The retail store has approximately 40 hours of labor time available each week. The total combined demand for both monitors is at least 40 monitors each week. How many units of each monitor should the retail store order each week to maximize its weekly profits and meet its weekly demand?

38) Creatine and protein are common supplements in most bodybuilding products. Bodyworks, a nutrition health store, makes a powder supplement that combines creatine and protein from two ingredients (X₁ and X₂). Ingredient X₁ provides 20 grams of protein and 5 grams of creatine per pound. Ingredient X₂ provides 15 grams of protein and 3 grams of creatine per pound. Ingredients X₁ and X₂ cost Bodyworks \$5 and \$7 per pound, respectively. Bodyworks wants its supplement to contain at least 30 grams of protein and 10 grams of creatine per pound and be produced at the least cost.

Determine what combination will maximize profits.

- 39) A furniture store produces beds and desks for college students. The production process requires assembly and painting. Each bed requires 6 hours of assembly and 4 hours of painting. Each desk requires 4 hours of assembly and 8 hours of painting. There are 40 hours of assembly time and 45 hours of painting time available each week. Each bed generates \$35 of profit and each desk generates \$45 of profit. As a result of a labor strike, the furniture store is limited to producing at most 8 beds each week. Determine how many beds and desks should be produced each week to maximize weekly profits.
- 40) An ice cream shop sells single scoop ice cream cones that come in three flavors: chocolate only, vanilla only, and chocolate-vanilla twist. The cones are prepackaged and sold to a supermarket daily. The ingredients used along with the minimum demand of each flavor are shown as follows:

	Ice C	ream Flavor	
	<u>Chocolate</u>	<u>Vanilla</u>	Chocolate-Vanilla
Ingredient:			
Chocolate	4 oz.	0 oz.	3 oz.
Vanilla	0 oz.	4 oz.	2 oz.
Min daily demand:	20 scoops	15 scoops	10 scoops

Each day, 40 pounds of chocolate and 38 pounds of vanilla are supplied to the ice cream shop from an outside vendor. The chocolate, vanilla, and chocolate-vanilla twist each yield a profit of \$2.00, \$2.50, and \$3.00 per cone, respectively. How many chocolate, vanilla, and chocolate-vanilla twist cones must prepackage daily to maximize daily profits?

41) A company manufactures four products A, B, C, and D that must go through assembly, polishing, and packing before being shipped to a wholesaler. For each product, the time required for these operations is shown below (in minutes) as is the profit per unit sold.

Product	Assembly	Polish	Pack	Profit (\$)
А	2	3	2	1.50
В	4	2	3	2.50
С	3	3	2	3.00
D	7	4	5	4.50

The company estimates that each year they have 1667 hours of assembly time, 833 hours of polishing time and 1000 hours of packing time available. How many of each product should the company make per year to maximize its yearly profit?

- 42) Suppose that a farmer has 5 acres of land that can be planted with either wheat, corn, or a combination of the two. To ensure a healthy crop, a fertilizer and an insecticide must be applied at the beginning of the season before harvesting. The farmer currently has 100 pounds of the fertilizer and 150 pounds of the insecticide at the beginning of the season. Each acre of wheat planted requires 10 pounds of the fertilizer and 12 pounds of the insecticide. Each acre of corn planted requires 13 pounds of the fertilizer and 11 pounds of the insecticide. Each acre of wheat profit of \$600, while each acre of corn harvested yields \$750 in profit. What is the optimal allocation for the crops that maximizes the farmer's profit?
- 43) A carpenter makes tables and chairs. Each table can be sold for a profit of \$50 and each chair for a profit of \$30. The carpenter works a maximum of 40 hours per week and spends 5 hours to make a table and 2 hours to make a chair. Customer demand requires that he makes at least twice as many chairs as tables. The carpenter stores the finished products in his garage, and there is room for a maximum of 6 furniture pieces each week. Determine the carpenter's optimal production mix.
- 44) A bank is attempting to determine where its assets should be allocated in order to maximize its annual return. At present, \$750,000 is available for investment in three types of mutual funds: A, B, and C. The annual rate of return on each type of fund is as follows: fund A, 15%; fund B, 12%; fund C; 13%. The bank's manager has placed the following restrictions on the bank's portfolio:
 - No more than 20% of the total amount invested may be in fund A.
 - The amount invested in fund B cannot exceed the amount invested in fund C.

Determine the optimal allocation that maximizes the bank's annual return.

45) A warehouse stocks five different products, A, B, C, and D. The warehouse has a total of 100,000 square feet of floor space available to accommodate all the products that it inventories. The monthly profit per square foot for each product is as follows:

Product	Profit per square foot
А	\$4.50
В	\$3.00
С	\$2.75
D	\$3.75

Each product must have at least 10,000 ft², and no single product can have more than 25% of the total warehouse space. The warehouse manager wants to know the floor space that should be allocated to each product to maximize profit.

46) A company that is introducing a new product would like to generate maximum market exposure. The marketing department currently has \$100,000 of advertising budget for the year and is considering placing ads in three media: radio, television, and newspapers. The cost per ad and the exposure rating are as follows:

	Cost/ad	Exposure/ad
Radio	\$10,000	30,000 individuals
Television	\$25,000	50,000 individuals
Newspaper	\$5000	20,000 individuals

The marketing department would like to place twice as many radio ads as television ads. They also would like to place at least 4 ads in each advertising media. What is the optimal allocation to each advertising medium to maximize audience exposure?

47) A meat packing store produces a dog food mixture that is sold to pet retail outlets in bags of 10 pounds each. The food mixture contains the ingredients turkey and beef. The cost per pound of each of these ingredients is as follows:

Ingredient	Cost/pound
Turkey	\$2.00
Beef	\$5.50

Each bag must contain at least 5 pounds of turkey. Moreover, the ratio of turkey to beef must be at least 2 to 1. What is the optimal mixture of the ingredients that will minimize total cost?

48) A company can decide how many additional labor hours to acquire for a given week. Subcontractors will only work a maximum of 20 hours a week. The company must produce at least 200 units of product A, 300 units of product B, and 400 units of product C. In 1 hour of work, worker 1 can produce 15 units of product A, 10 units of product B, and 30 units of product C. Worker 2 can produce 5 units of product B, 20 units of product B, and 35 units of product C. Worker 3 can produce 20 units of product A, 15 units of product B, and 25 units of product C. Worker 1 demands a salary of \$50/hr, worker 2 demands a salary of \$40/hr, and worker 3 demands a salary of \$45/hr. The company must choose how many hours they should hire from each worker to meet their production requirements and minimize labor cost.

1) D

2) D 3) D 4) D 5) B 6) B 7) C 8) D 9) B 10) E 11) D 12) D 13) E 14) E 15) E 16) B 17) A 18) FALSE 19) TRUE 20) TRUE 21) FALSE 22) TRUE 23) TRUE 24) FALSE 25) TRUE 26) TRUE 27) TRUE 28) TRUE 29) FALSE 30) FALSE

- 31) TRUE
- 32) FALSE

	A	B	С	D	E	F
1						
2		<u>X1</u>	<u>X2</u>		_	
3	Profit Coefficients:	6	4		Decis	
4	Optimal Values:	10	0	+	varial	oles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S
7	Constraint 1	1	2	10	5	16
8	Constraint 2	3	2	30	5	30
9	Constraint 3	1	0	10	2	2
10						
11	Objective function value:	60				
12		_		optimal of		
13				function	value	
14						

34)

	A	В	С	D	E	F
1						
2		<u>X1</u>	<u>X2</u>	1		
3	Profit Coefficients:	5	3	1	Decis	ion
4	Optimal Values:	20	0	+	varial	oles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S
7	Constraint 1	1	1	20	5	20
8	Constraint 2	1	0	20	2	5
9	Constraint 3	0	1	0	5	10
10						
11	Objective function value:	100				
12						
13				function	value	
14						

35)

	A	B	С	D	E	F
1						
2		<u>X1</u> 3	<u>X2</u>		200	
3	Cost Coefficients:	3	2		Decis	
4	Optimal Values:	0	10		varial	oles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S.
7	Constraint 1	1	1	10	2	10
8	Constraint 2	1	1	10	5	20
9	Constraint 3	0	1	10	5	10
10	Constraint 4	1	0	0	5	18
11				7		
12						
13	Objective function value:	20			1	
14	2.	_		optimal o		
15				function v	alue	
16				1 20 20		

	A	B	С	D	E	F
1						
2		<u>X1</u>	<u>X2</u>			
3	Cost Coefficients:	6	3		Decis	ion
4	Optimal Values:	0	8	+	varial	bles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S.
7	Constraint 1	2	4	32	2	16
8	Constraint 2	4	3	24	2	24
9						
10	Objective function value:	24				
11			-	-> optimal o		
12				function	function value	
13		1 1				

37)

	A	B	С	D	E	F	G	Н
1					. Q.		1	
2		<u>X1</u>	<u>X2</u>	1				
3	Profit Coefficients:	300	250	1	Decis	ion		
4	Optimal Values:	0	240		varial	bles		
5								
6	Constraint Coefficients:			L.H.S.		R.H.S.	Units are	in
7	Constraint 1	30	10	2400	≤	2400	minutes	
8	Constraint 2	1	1	240	2	40		
9				1				
10	Objective function value:	60000		-				
11		-			objective			
12				function	value			
13	Formulation				2			
14	Max: 300 X1 + 250X2							
15	Subject to:			5				
15 16	30X1 + 10X2 ≤ 2400							
17 18	X1 + X2 ≥ 40							
18	X1, X2 ≥ 0							
19				Ĵ.				
20				11				

	A	В	С	D	E	F
1						
2		<u>X1</u>	<u>X2</u>		-	
3	Cost Coefficients:	5	7		Decis	0.000
4	Optimal Values:	2	0		varial	oles
5						
6	Constraint Coefficients:			L.H.S.		<u>R.H.S.</u>
7	Constraint 1	20	15	40	2	30
8	Constraint 2	5	3	10	2	10
9						
10	Objective function value:	10				
11				-> optimal o		
12				function	value	
13	Formulation					
14	Min 5X1 + 7X2					
15	Subject to:					
16	20X1 + 15X2 ≥ 30					
17	5X1 + 3X2 ≥ 10					
18	X1, X2 ≥ 0					
19						
20						

39)

	A	В	С	D	E	F
1						
2		Beds	Desks		12	
3	Profit Coefficients:	\$ 35.00	\$ 45.00		Decis	ion
4	Optimal Values:	4.375	3.4375	+	varial	oles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S.
7	Constraint 1	6	4	40	≤	40
8	Constraint 2	4	8	45	<	45
9	Constraint 3	1	0	4.375	5	8
10						
11						
12	Objective function value:	\$ 307.81		-		3
13				optimal of		
14				function	value	
15	Formulation					2
16	Min 35 Beds + 45 Chairs					
17	Subject to:					
18	6 Beds + 4 Chairs ≤ 40 (1)					
19	4 Beds + 8 Chairs ≤ 45 (2)					
20	Beds ≤ 8 (3)					
21	Beds, Chairs ≥ 0					
22	distance of the second s	1				

	A	В	С	D	E	F	G
1							
2		Chocolate	Vanilla	Chocolate_Vanilla			
3		<u>X1</u>	<u>X2</u>	<u>X3</u>			Decision
4	Profit Coefficients:	2	2.5	3	·		variables
5	Optimal Values:	20	58.66667	186.6666667			
6							
7	Constraint Coefficients:				L.H.S.		R.H.S.
8	Constraint 1	4	0	3	640	5	640
9	Constraint 2	0	4	2	608	5	608
10	Constraint 3	1	0	0	20	2	20
11	Constraint 4	0	1	0	58.66667	2	15
12	Constraint 5	0	0	1	186.6667	2	10
13							
14	Objective function value:	746.6667					
15				optimal objective	/e		
16				function value			
17	Formulation						
18	Max 2X1 + 2.50X2 + 3X	3					
19	Subject to:						
20	4X1 + 3X3 ≤ 640						
21	4X2 + 2X3 ≤ 608						
22	X1 ≥ 20						
23	X2 ≥ 15						
24	X3 ≥ 10						
25	X1, X2, X3 ≥ 0						
26	11, 12, 10 20						

41)

1	A	В	С	D	E	F	G	Н	1	J
1	1									
2		A	B	C	D		De	cision	1	
3	Profit Coefficients	1.5	2.5	3	4.5			iables		
4	Optima Values:	0	16008	5988	0	4	var	lables		
5						Contraction in the				
6	Constraint Coefficients:					L.H.S.		R.H.S.		
7	Constraint 1	2	4	3	7	81996	5	100020	-	
8	Constraint 2	3	2	3	4	49980	5	49980	Units	
9	Constraint 3	2	3	2	5	60000	5	60000 -	minut	es
10										
11	Objective function value:	57984								
12						objective				
13					function	value				
14	Formulation			1	1					
15	Manual COA + 0 COD + 0	0 . 4 500								
16	Max 1.50A + 2.50B + 3	C + 4.50								
17	Subject to:	00000								
18	2A + 4B + 3C + 7D ≤ 1									
19	3A + 2B + 3C + 4D ≤ 4									
20	2A + 3B + 2C + 5D ≤ 6	0000								
21	A, B, C, D ≥ 0									
22										8

	A	B	С	D	E	F
1						
2		Wheat (W)	Corn(C)		-	
3	Profit Coefficients:	600	750		Decis	ion
4	Optimal Values:	0	5	+	varial	oles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S.
7	Constraint 1	1	1	5	5	5
8	Constraint 2	10	13	65	5	100
9	Constraint 3	12	11	55	5	150
10						
11	Objective function value:	3750	1	_		
12				optimal of		
13				function	value	
14	Formulation					
15	Max 600W + 750C					
16	Subject to:					
17	W + C ≤ 5					
18	10W + 13C ≤ 100					
19	12W + 11C ≤ 150					
20	-W, C≥0					
21	VV, C Z U					

43)

	A	В	C	D	E	F
1						
2		Tables (T)	Chairs (C)		10 M	
3	Profit Coefficients:	\$ 50.00	\$ 30.00		Decisi	on
4	Optimal Values:	6	0	+	variab	les
5						
6	Constraint Coefficients:			L.H.S.		R.H.S
7	Constraint 1	5	2	30	5	40
8	Constraint 2	2	-1	12	2	0
9	Constraint 3	1	1	6	5	6
10						
11	Objective function value:	\$ 300.00		1		
12				optimal of		
13				function	value	
14	Formulation	e de la constance		J		
15	Max 50T + 30C					
16	Subject to:					
17	5T + 2C ≤ 40 (1)					
18	2T - C ≥ 0 (2)					
19	$T + C \le 6 (3)$					
20	T. C ≥ 0					
21	1,020					

	A	В	С	D	E	F	G	H
1								
2		Fund A	Fund B	Fund C				
3	Profit Coefficients	1.15	1.12	1.13	· · · · · · · · · · · · · · · · · · ·		Decision	
4	Optimal Values:	150000	300000	300000	<		Variables	
5								
6	Constraint Coefficients				L.H.S.		R.H.S	
7	Constraint 1	1	0	0	150000	≤	150000	
8	Constraint 2	0	1	-1	0	≥	0	
9	Constraint 3	1	1	1	750000	≤	750000	
10								
11	Objective function value	847500						
12	Rate of return	0.13						
13			~					
14				(Objective			
15				f	unction va	lue		
16	Max 1.15A + 1.12 Subject to:	B + 1.13C						
17	A ≤ 150,000							
18	B-C≥0							
19	A + B + C ≤ 750,00	0						
20	A,B,C≥0							
21								
22								
23								
24								

	A	B	С	D	E	F	G	н
1								
2		A	B	<u>c</u>	D			
3	Profit Coefficients:	\$ 4.50	\$ 3.00	\$ 2.75	\$ 3.75			Decision
4	Optimal Values:	10000	10000	10000	10000			variables
5								
6	Constraint Coefficients:					L.H.S.		R.H.S.
7	Constraint 1	1	1	1	1	40000	5	100000
8	Constraint 2	1	0	0	0	10000	5	25000
9	Constraint 3	0	1	0	0	10000	5	25000
10	Constraint 4	0	0	1	0	10000	5	25000
11	Constraint 5	0	0	0	1	10000	\$	25000
12	Constraint 6	1	0	0	0	10000	2	10000
13	Constraint 7	0	1	0	0	10000	2	10000
14	Constraint 8	0	0	1	0	10000	2	10000
15	Constraint 9	0	0	0	1	10000	2	10000
16								
17	Objective function value	\$140,000.00	1	7	2			
18				optimal	objective			
19				function	value			
20	Formulation				-			
21	Max 4.50A + 3B + 2.750	+ 3 75D						
22	Subject to:	5 - 5.750						
23	A + B + C + D ≤ 100,00	0.(1)						
24		0(1)						
25	A ≤ 25000 (2)							
26	B ≤ 25000 (3)							
	C ≤ 25000 (4)							
27	D ≤ 25000 (5)							
28	A ≥ 10000 (6)							
29	B ≥ 10000 (7)							
30	C ≥ 10000 (8)							
31								
32	D ≥ 10000 (9)							
	A, B, C, D ≥ 0							
33								

46)

	A	В	Formula Bar	D	E	F	G
1		1					
2							
3		Radio (R)	Television (T)	Newspaper (N)			Decision
4	Exposure/ad	30,000.00	50,000.00	20,000.00	4		variables
5	Optimal Values:	4	2	2			10 A 10 A 10 A 10 A
6							
7	Constraint Coefficients:				L.H.S.		R.H.S.
8	Constraint 1	10000	25000	5000	100000	≤	100,000
9	Constraint 2	1	0	0	4	2	2
10	Constraint 3	0	1	0	2	2	2
11	Constraint 4	0	0	1	2	2	2
12	Constraint 5	1	-2	0	0	2	0
13	and a second second				[
14	Objective function value:	260000					
15				optimal object			
16				function value			
17	Formulation						
18	Max 30,000R + 50,000T	+ 20 000N					
19	Subject to:	. 20,00011					
20	10,000R + 25,000T + 50	100N < 750.0	00				
21	R≥2						
22	T≥2						
23	N ≥ 2						
24	R - 2T ≥ 0						
25	A, B, C ≥ 0						
26	, , , , , , , , , , , , , , , , , , , ,						
27	L						

	A	В	С	D	E	F
1						
2		Turkey (T)	Beef (B)		74	102
3	CostCoefficients:	2	5.5		Decis	17 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	Optimal Values:	10	0	+	varial	oles
5						
6	Constraint Coefficients:			L.H.S.		R.H.S.
7	Constraint 1	1	1	10	=	10
8	Constraint 2	1	-2	10	2	0
9	Constraint 3	1	0	10	2	5
10						
11	Objective function value:	20		10000		
12				optimal of		
13		1		function	value	
14	Formulation					
15	Min 2.00T + 5.50B					
16	Subject to:					
17	T + B = 10					
18	T - 2B ≥ 0					
19	T≥5					
20	W, C ≥ 0					
21	W, 0 2 0					

Cost Coefficients Optimal Values	Product A (A) 50 0	Product B (B) 40 9.230769231	Product C (C) 45 7.692307692			cision riables
Constraint Coefficients				L.H.S.		<u>R.H.S</u> .
Constraint 1	15	5	20	200	2	200
Constraint 2	10	20	15	300	2	300
Constraint 3	30	35	25	515.3846	2	400
Constraint 4	1	0	0	0	≤	20
Constraint 5	0	1	0	9.230769	≤	20
Constraint 6	0	0	1	7.692308	≤	20
Objective function value	715.3846154	Mar.	nal objective			
Formulation			ion value			
Min 50A + 40B + 45C Subjectto: $15A + 5B + 20C \ge 200$ $10A + 20B + 15C \ge 300$ $30A + 35B + 25C \ge 400$ $A,B,C \le 20$ $A,B,C \ge 0$						