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A

Solutions to Exercises

A.1 Chapter 1 Solutions

Solution 1 Color JPEG compressed images are typically 5-50 times smaller
than they would be if stored “naively,” so the ratio of naively-stored to
JPEG-stored might range from a low of 0.02-0.2.

Solution 2
e From Euler’s identity we have (for x real)

e = cos(x) + i sin(—x)

cos(x) — i sin(x)

cos(x) + i sin(x)

= e,

o If 2%* = 1 then cos(27x) + isin(2zx) = 1. We conclude that sin(2zx) = 0,
which forces 2zx = 2zk for some integer k, that is, x = k. Conversely, if x is
an integer k then e*** = 2" = cos(2xk) + i sin(27k) = 1.

Solution 3 The eighth roots of unity are the numbers e**/8 where 0 < k < 7,
and are equal to

V2 V2o V2 V2 V2 V2 V2 W2
Ty Tt 2 T2 ” 2 2Tt T T

(moving counterclockwise around the unit circle).

1 1,

E]

Solution 4 The mth component of E,; is given by equation (1.23) and is
Ey i (m) = exp(2mikm/N). But (exp Qrikm /NN = exp(2rikm) = 1 since k
and m are integers (refer to Exercise 2).
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A Solutions to Exercises
Solution 5 We have from Euler’s identity
x(t) = a cos(wt) + bsin(wt) = g(ei(”t) +e @ 4 g(e”"t) — e7iohy
i
a . ot —iwt lb iwt —iwt
=—(" +e ——(7)—e
2( ) 5 (e"") )
= %(a — ib)e + %(a + ib)e~ "

(since 1/i = —i). Comparison to x(t) = ce + de~™* shows that ¢ = ”;—ib, d=

2 These last two linear equations are easily solved for @ and b to yield
a=c+d,b=ilc—d).

Solution 6
(a) The sampled versions are

x =(0,0.325,0.65,0.975)
y ~(0,0.382,0.707,0.924)
Of course the result of sampling x(¢) + y(¢) is just x +y = (0, 0.708, 1.36,
1.90).
(b) We find
q(x)=(0,0,1,1)
q(y) =0,0,1,1)
qx+vy)=0,1,1,2).
Then g(x) + q(y) # q(x +y). Also, g(2x) = (0, 1, 1, 2) which is not 2g(x).

Solution 7 Let x(¢t) =sin(x£/2) on 0 <t <1 (note 0 <x(t) <1 on this
interval). Suppose we sample x(¢) at times ¢ = 0.2,0.4, 0.6, 0.8.

(a) We find values
0.3090169944, 0.5877852525, 0.8090169943, 0.9510565165

(b) Rounding to the nearest multiple of 0.25 yields 0.25,0.50,0.75, 1.00. This
distortion is 8.534 x 107,

(c) Rounding to the nearest multiple of 0.25 yields 0.3,0.6,0.8,1.00. This
distortion is 1.354 X 1073, Rounding to the nearest multiple of 0.05 yields
0.30, 0.60, 0.80, 0.95. This distortion is 1.56 x 10™*.

(d) The codebook here consists of some range of multiples of /. The dequanti-
zation map is simply g(k) = kh.

Solution 8 Yes, this is a vector space. It is clearly closed under addition and
scalar multiplication. Addition commutes, is associative, the zero vector is the
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A.1 Chapter 1 Solutions | 3

zero polynomial, and all the other rules of Definition 1.1 are straightforward to
verify.

Solution 9 This is not a vector space—it is not closed under addition or scalar
multiplication, for example, if

1
/ fx)dx=3
0

then the function 2f satisfies

1
/ 2f(x)dx=6
0

and is not in the set.

Solution 10 R” is NOT a subspace of C”, if C” is taken as a vector space over
C, for we do not have closure under scalar multiplication. For example, in the
case n = 2, we can take v = (1,2) € R? and scalar ¢ = i. But cv = (i, 2i) is not
in R2,

Solution 11 With the operations as defined, we clearly have closure in addi-
tion and scalar multiplication. The commutativity and associativity of addition
follow from the same properties for the reals numbers. The zero vector is just
the element

0=1(0,0,0,...).
The inverse of any element x = (x,, X, ...) is
(=%, =%1, =%, ...).

Properties (e)—(h) in Definition 1.1 follow immediately from component-by-
component application of the corresponding properties for real numbers.

Solution 12 As remarked in Example 1.8, we have (p + q)> < 2p? + 24* for any
real numbers p and g. As a result if x = (x,x;,...) and y = (¥, %, ...) are ele-
ments of L*(N) then (x; + y;,)* < 27 + 2y7. Sum both sides to conclude that

Z(xk + 9% < 2(29&% + Zyi) < o
k=0 k=0 k=0
so the sum x+vy is in L?(N) and we have closure under addition. Clearly
2i(cx)? = ¢ ¥ x7, so we have closure under scalar multiplication. All other
properties are verified exactly just as for Exercise 11.

Iy kxi < oo then the x; themselves must limit to zero (a basic property of
convergent series). Thus, for example, for all k sufficiently large, say k > N for
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2 ):2 372 ) Then we have |’ | <
07 Tt N=-1 kl =

\/M for all k. Thus, L2(N) is a subset of L*(N) which is closed under addition
and scalar multiplication, hence a subspace.

some N, we have xlf <1.Let M = max(l,x

Solution 13

(a) If there were two “zero vectors” 0, and 0, then we must have 0, + 0, = 0,
from property (iii/c) in Definition 1.1. But we also must have 0, + 0, = 0,.
Comparison of the last two equations shows that 0, = 0,.

(b) That the left and right sides in line 1 are equal follows from (iii/g). The left
side of line 2 equals the left side of 1 since 1 + 0 =1 in the reals, and the
right side of line 2 equals the right side of line 1 due to property (iii/h). The
left side of line 3 equals the left side of line 2 due to (iii/h). Line 4 follows by
adding —u to both sides of line 3 and invoking commutativity and associa-
tivity (iii/a, iii/b). Line 5 follows from the definition of the additive inverse
—u, and line 6 follows from the definition of 0, the zero vector.

(c) Many ways to proceed. Start with u + v = 0, which is equivalent to

ut+v=_(14+(-1)u

since from part (b) we know Ou = 0 (and 1 + (—=1) = 0 in the reals!). The
above equation leads to (distribute according to property (iii/f)) u +v =
u + (—1)u. Add —u to both sides and get the desired conclusion, v = (—1)u.

Solution 14 The vectors are, for the case N = 2,

1 1
E, s =E)z=E) = [1] o Ey =Ky, [_1] :

The vectors are, for the case N = 2,

1 1
1

~1+iy/3 ~1-i\/3
]:-:3 o= Es,l = 2 s E&_1 = E3,2 = 2 s ES,O =|1

—1-iy/3
2

—1+iy/3 1
2

Solution 15
(@) We have |f(¢)| = |a||e| = |a]| (since it follows from Euler’s identity that

leit| = \/ sin’(wt) + cos?(wt) = 1). By the same reasoning we have |a| =
Ir||€?| = |r| = r (since r > 0). Then |f(¢)| = r.
(b) Fromf(¢) = ae’* and a = re we have

f(t) = re®* = rcos(wt + 0) + ir sin(wt + ).
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Now, for example,
cos(wt + 0) = cos(w(t + 0/ w))

so that the graph of cos(wt + 0) is the graph of cos(wt) shifted a distance
0/w to the left. This corresponds to a fraction 6 /w of one period. A similar
consideration applies to sin(wt + ). We conclude that the graph of ae®” is
just e’ shifted “to the left.” This actually corresponds to advancing the sig-
nal in time (think about why—f(¢) will attain a given value 6 /w in advance
of ei®t).

Solution 16 We can write (using Euler’s identity)
eiax + e—iax eiﬂy + e—iﬂ}’
2 2

1 ax ipy o L —iax ipy | L jax —i |
= — Wiy 4 —pmiaxgify 4 — plaxo=ify 4 _ p=iax p=ify,

cos(ax) cos(fy) =

Similarly,
cos(ax) sin(fy) = —iei“"eiﬂy - ie_i“"eiﬁy + iei"xe_"ﬁy + ie‘"’"e"ﬁy ,

. U ux i I i i i jor —i i igx —i
sin(ax) cos(fy) = —L—Le"”‘e‘ﬂy + Ee faxgify _ Z—Le“"‘e by 4 Ee faxo=ihy

sin(ax) sin(fy) = —iei“"eiﬂy + ie‘i"xeiﬂy + Z—lLei“"e_[ﬂy — ie‘i""e_iﬂy.

Solution 17 The relation E, = C, +iS, follows from Euler’s identity, for
the mth component of E, is E (m) = e*™*/N  which is cos(2zmk/N) +
isinRrmk/N) = Ci(m) + iS;(m), where C,(m) and S;(m) are the mth
components of C, and S, respectively.

The equation E, = C, —iS, follows from E,(m) = e>wimk/N = ¢=2rimk/N —
cos(2rmk /N) — isin(2zmk /N) = C,(m) — iS;(m). The relations C, = %(Ek +
EandS, = %(Ek — E,)are similar and follow from component-by-component
application of C.(m) = %(Ek(m) +E;(m) and C,(m)= %(Ek(m) —E.(m)
(which themselves are consequences of equation (1.13)).

The final two relations are similar and consequences of component-by-
component application of C;(m) = Re(E,(m)) and S;(m) = Im(E,(m)).

Solution 18 If we treat E, ; as an m X 1 matrix, the row ith column r entry is
E, (r,1) = expQrirk/m).
The quantity E!  is a 1 x 7 matrix with row 1 column s entry

EZ,I(L s) = exp(2zisl/n).
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The definition of matrix multiplication dictates that the row r column s entry
of the product E,, (E! is given by

1
(B, EL )(r,8)= ) E, (. p)(EL (D, )
p=1

=E, (r, DE] )(1,5)
= exp(2rirk /m) exp(2zisl/n)
= exp(2rzi(rk/m + sl/n)).

(Note the sum above is trivial—there is only one term.) The last equation is
precisely equation (1.25).

Solution 19
(a) We have, from the given information,

8(t) = expri(px(t) + qy(1)))
= exp(2ri[(px, + qy,) + (pu; + qu,)t])
=exp(2ri(px, + qy,)) exp((pu,; + qu,)t)
= Aexp((u-v)r),

where A = exp(2ri(px, + qy,)). We have u-v = |ul||lv] cos(@) = ||v]|
cos(0) since ||u|| = 1. All in all this yields

g(t) = Ag2millvllcos(O)t (A.1)

(b) If L is parallel to the unit vector u and orthogonal to v then u-v =0, or
equivalently, cos(f) = 0. Thus, g(¢) from above is identically equal to the
constant A along L, and so is f(2).

(c) The function e**Vl<s®t (and hence f in the direction u) goes through

F = ||v]| cos(8) = (p* + g»)"/* cos(0)

cycles per unit change in ¢ (the function e?**

unit change in ).

(d) The 0 values that maximizes F from above is § = 0, corresponding to
motion in the direction v (orthogonal to the line L in part (b)). In this
direction the function f oscillates at 1/p* + g> cycles per unit motion. In
part (b) we had 6 = /2.

(e) The peak-to-peak distance isjust 1/F with 6 = 0, thatis, 1/4/p*> + ¢*>. Com-
pare this to the images in Figure 1.7.

goes through F cycles per
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Solution 20 The vectors Eq, are, in the order k =0,1,2,3,4,5 (and compo-
nents indexed starting from 0),

(1] [ 1 1T 1 1117 1 171 1 |
. 1+iv/3 ~1+i/3 i —1-i\/3 1-iy/3
2 2 2 2
X —1+iy/3 ~1-i\/3 | —1+iy/3 ~1-i\/3
’ 2 ’ 2 ’ , 2 ’ 2
1 -1 1 -1 1 -1
. —1-iy/3 ~1+iV/3 . —1-iy/3 ~1+iy/3
2 2 2 2
. 1-iv/3 —1-iy/3 i “1+i/3 1+i/3
|2 1L 2 2 1L 2

We already know the vectors are periodic with period 6 beyond this range. With

this range, we can see that Es; = E¢ 5 and E¢, = E, ;. See the solution to the next
exercise.

Solution 21 The mth component of E is
Ey i (m) = exp(2mikm/N)
and the mth component of Ey 5_; is
Ey n_x(m) = expQri(N — kym/N) = exp(2zim) exp(—2xikm/N) = m

since exp(2zim) = 1 and exp(2zikm /N) = exp(—2xikm/N).

Solution 22 The row r column s entry for £, ;; is
Enmii(1s8) = exp2ri(rk/m + sl/n))
from equation (1.25). Then, for example,
Eniami (> 8) = expRri((k + m)r/m + Is/n))
= exp(2zikr) expri(rk/m + sl/n))
=&k i(158).

Component-by-component application of the above shows &, ., = &, . 11

so &, 4 is periodic in k with period m. Similar analysis shows &, ,,, =

8m,n,k,l+n'
As an example of a conjugate aliasing relation, we have

E pnmtini(7-8) = expQri((m — k)r/m + (n — )s/n))
= exp(2zi(r + s)) exp(2zi(—rk/m — sl /n))

= m,n,k,l(r’ S)‘
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Component-by-component application of the above shows &, ., =
é

mn,m—k,n—1*
Solution 23

(a) One can easily compute that v, - v, = v, - v; = v, - v, = 0. Note also that
Y 1 V2 1°V3 2 V3
Vil = 2, [Iv I = 3, [lvsI*> = 6.
(b) Herew -v, =7,w-v, = 6,w - v, = 9. Thus (using the norms from part (a)),
1 2 3 g p

7 3
W=V +2v, + EVS.

(c) The rescaled vectors are (in row form)

w = (1/v2,1/v2.0), u, =(=1/v/3.1//3,1/1/3),
u; = (1/v6,-1/v/6,2/V6).

(d) In this case we find

7V/2 Ve

36
w=——v+ 2\/§v2 Vs

(e) From part (d)

2 2
<l§> +V32+ <3_\2/g> =32 +42 + 52,

2

Both sides are, in fact, equal to 50.

Solution 24

(a) Here

3420 9 3-2i
——E,; —JE, + TE4,3~

7
w=-E,,+
4 %0 4 1y

(b) Each vector E,; has norm 2, so the rescaled vectors are just EM = 1E,,.
5 s 274,
(¢) We find

7
2
(d) We should have

~ = 9~ N
w=-E,+B/2+)E,, - §E4!2 +(3/2 = E,;.

(7/2*+13/2+ >+ (9/2)> + 3/2 — i|> = 12 + 52 + (=2)* + 3%

Both sides are, in fact, equal to 39.

Page §
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Solution 25

(a) Itis easy to check that (v,w), = (w,V),. The conjugation is irrelevant here,
and since d,v,w; = d,w, v, the relevant sums defining (v,w), and (w,v),
are the same.
We also have

(au+bv,w), = Z di(au, + bv)w,
k=1

k=1 k=1
=a(u,w),; + b(v,w),.

That (v,v),; > 0 follows since

k=1

and each piece of the sum is nonnegative. Also, if (v,v), = 0 have

z”: dyv;, = 0.
k=1

Since each term in the sum is nonnegative we conclude d,v; = 0 for all k,
forcing v; = 0. Thus, v =10.
The norm defined by this inner product is

" 1/2
v, = (2 dkvi> :
k=1

(b) In this case we have
(v, V) = (DR2)5G) + (B5)(1)(-2) =0

so the vectors are orthogonal.

(c) Thelengths are ||v,||, = 3 and ||v, ||, = 3\/%.
(d) Here
7 4

W= gvl - gvz.

Solution 26 As suggested, start with v = (v —w) + w and take the norm of
both sides, then apply the triangle inequality:

vl = 1I(v = w) + wi|
<NV =wll + liwll



